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Tellurium chemistry offers alternative routes for a number of
classical organometallic processes [1]. The unique stereochemical
control associated with various Te-promoted transformations, ta-
ken together with the high Te–Li exchange rate [1,2], represent
specific advantages associated with the application of organo-Te
compounds in synthetic processes [3–7]. Thus, additions of Te(IV)
halides to alkynes have been employed in the preparation of bioac-
tive Te-containing compounds, some of which are effective inhibi-
tors of human chatepsine B [8] or exhibit potent antioxidant
properties [9]. These reactions are highly stereospecific and occur
exclusively via sin or anti addition, depending on the alkyne em-
ployed (Scheme 1) [10]. Whereas proposals of an ionic mechanism
for the addition of Te(IV) halides to unsaturated compounds date
back to the early days of Te chemistry [10–12], no mechanistic
studies of such reactions involving Te(IV) species have been
reported.

We have recently reported the characterization of organic
Te(II)-centered radicals by EPR spin trapping and by ESI-MS and
ESI-MS/MS [13]. In the present study, we explore the possibility
of a radical mechanism for the addition of TeCl4 to alkynes using
a similar analytical approach together with EPR isotopic labeling
studies. We also report the generation of aryl radicals promoted
by the reaction of a TeCl3 centered-radical with the nitroso spin
trap DBNBS [14].
008 Published by Elsevier B.V. All
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The addition reactions of TeCl4 to alkynes were performed in
benzene. Samples were extracted from the reaction mixtures and
examined by EPR in the absence and in the presence of the spin
traps DBNBS, DMPO, MNP and PBN [14]. Intense EPR spectra were
generated by the samples only in the presence of DBNBS (Fig. 1).
All of the reactions studied produced similar EPR spectra, irrespec-
tive of the alkyne involved (Table 1, runs 1–5), and displayed a trip-
let of doublets (aN = 12.7 G, aH = 5.65 G, line width = 2.5 G,
g = 2.0085) that could be attributed to hyperfine interaction of an
unpaired electron spin with the nuclear spin of one nitrogen and
one hydrogen atom. The recorded aN hyperfine splitting constant
is characteristic of carbon-centered radicals linked to the nitroso
group of the DBNBS spin trap [15].

Samples of reaction mixtures collected at different times during
the progress of the addition of TeCl4 to an alkyne (0–3 h) and
incubated with DBNBS, presented similar EPR signal intensities
indicating that the DBNBS radical adduct maintained the same
instantaneous concentration throughout the course of the reaction.
The DBNBS radical adducts so-formed were stable for 2 h after
which time they decayed slowly to non-radical species, probably
by radical reduction as inferred by ESI-MS analysis.

In an attempt to substantiate the hypothetic attack of a TeCl3

centered-radical on the nitroso group of the DBNBS spin trap, we
synthesized 125TeCl4 containing EPR-active Te. The spectra
obtained in experiments employing labeled and non-labeled Te ha-
lides were similar (Table 1, cf. runs 2 and 6), from which it may be
concluded that the Te atom is not in the neighborhood of the un-
paired electron. Since sigma-radicals are known to add to benzene
rights reserved.
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Scheme 1. Proposed mechanism for the addition reaction of TeCl4 to alkynes.
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Fig. 1. Representative EPR spectrum obtained following incubation of a sample of a
reaction mixture in benzene with methanolic DBNBS for 60 min. The gray line
represents a computer simulation of the spectrum (generated using Bruker
Symphonia software).

Table 1
Experimental EPR data of the reactions and control experiments performed

Runs Spectra recorded in benzene/methanol
(�1:1 v/v)a

EPR hyperfines of DBNBS radical
adducts

aN (G) aH (G)
1b TeCl4 + PhC„CPh + DBNBS 12.7 5.65
2 TeCl4 + MeC„CPh + DBNBS 12.7 5.65
3 TeCl4 + HC„CPh + DBNBS 12.7 5.65
4 TeCl4 + HC„C(CH2)3CH3 + DBNBS 12.7 5.65
5 TeCl4 + HC„CCH2OH + DBNBS 12.7 5.65
6c 125TeCl4 + MeC„CPh + DBNBS 12.7 5.65
7c TeCl4 + MeC„CPh/C6D6 + DBNBS 12.7 5.65
8c TeCl4 + MeC„CPh + DBNBS/MeOD-d4 12.7 5.65
9c TeCl4 + DBNBS No signal
10 c MeC„CPh + DBNBS No signal
11c Me(Cl)@C(Ph)TeCl3 + DBNBS No signal

a All spectra were measured after reaction mixtures had been incubated with a
methanolic solution of DBNBS for 60 min. Analyzed samples comprised benzene/
methanol solutions with final concentrations equivalent to 2.2 mM alkyne, 2.0 mM
TeCl4 and 6.0 mM DBNBS.

b Incubation time was 10 min.
c Control experiments.
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to give cyclohexadienyl radicals [16], the reaction between 1-phe-
nyl propyne and TeCl4 was performed with benzene-d6 as solvent
in order to examine the potential formation of a DBNBS-cyclohexa-
dienyl radical adduct. This possibility could be excluded, however,
since the EPR spectra obtained from experiments involving labeled
and non-labeled benzene were similar (Table 1, cf. runs 2 and 7).
Having excluded two possible pathways to the formation of the
DBNBS radical adduct, it is proposed that a TeCl3 centered-radical
1 could promote Br-atom abstraction from the DBNBS spin trap 2
generating an aromatic carbon-centered radical 3 in a process sim-
ilar to that reported for Sn(IV)-centered radicals [17–19]. The rad-
ical 3 would then attack the nitroso group of an intact DBNBS
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Scheme 2. Proposed mechanism for the formation of DBNBS radical adduct 4.
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Fig. 2. Structures of DBNBS adducts based on
molecule (Scheme 2) producing the DBNBS radical adduct 4, the
proposed structure of which is in agreement with the observed
EPR spectral parameters (Table 1).

With the aim of confirming the structure of 4 using ESI-MS and
ESI-MS/MS techniques, the DBNBS radical adduct solution was in-
jected directly into the mass spectrometer immediately after EPR
analysis. Despite changing the parameters on the spectrometer,
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the hypothetical adduct 4 could not be detected. On the other
hand, DBNBS adducts with structures similar to 4 (Fig. 2) were de-
tected by ESI-MS experiments in which the spectrometer was
operated in the positive ion mode (ESI(+)-MS).
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Fig. 3. Recorded ESI(+)-MS and simulated mass spectra of the cluster centered on m/z 805
(B) Experimental spectrum. (C) Simulated spectrum for compound 6 (molecular formul
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Fig. 4. Recorded ESI(+)-MS and simulated mass spectra of the cluster centered on m/z 787
(B) Experimental spectrum. (C) Simulated spectrum for compound 8 (molecular formul
As shown in the expanded ESI(+)-MS spectra (Figs. 3 and 4), the
ionic clusters of the detected species comprised two pairs of
DBNBS adducts (5/6 and 7/8, respectively) in which different
groups were linked to the Te atom. The exchange of Cl for OMe
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Fig. 5. Recorded ESI(+)-MS and simulated mass spectra of the ion at m/z 804. (A) Experimental spectrum of 5. (B) Simulated spectrum for compound with molecular formula
C6H5BrNSO5Te.

N
O N

Br

SO3

O

Br

Br

O3S

4

-
-

TeCl3

1
N
O

Br

SO3

Br

Br

O3S

-
-

N
OCl2Te

Cl

N
O

TeCl
9 Cl

N
O

Br

SO3

Br

Br

O3S

-
- H

Scheme 3. Proposed mechanism for the formation of EPR-active radical adduct 9. In bold, the H and N atoms that interact with the unpaired electron spin.
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Scheme 4. Reformulated mechanism for the addition reaction of TeCl4 to alkynes.
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or OH groups linked to Te would have occurred during the course
of ESI-MS analysis [20]. As can be observed, the isotopic distribu-
tion patterns of the recorded mass spectra (Figs. 3 and 4, spectra
B) are analogous to the simulated spectra (Figs. 3 and 4, spectra
A and C).

ESI-MS/MS of the ion at m/z 805 from the DBNBS adduct 5
(Fig. 5A) showed a cluster of ions at m/z 407, 409, 411, 413 and
415, corresponding to the fragment ions formed by the loss of
the DBNBS group and transformation of Te(IV) to Te(II) with loss
of the Cl and OMe groups and addition of H2O to the aromatic ring
([M–Cl–OMe) + H2O]+). These fragment ions show an isotopic dis-
tribution analogous to that of the simulated ESI-MS spectrum
(Fig. 5B), which is characteristic of a compound containing one
Br and one Te atom. The ESI-MS/MS of the DBNBS adducts 6–8
generated similar clusters of ions with the most abundant isotope
ion at m/z 413.

On the basis of the results presented herein, the proposed
mechanism involving the generation of 4 (Scheme 2) constitutes
the initial step in the formation of the EPR-active radical adduct
9 (Scheme 3). Once formed, the nitroso group of 4 will be attacked
by the radical specie 1 producing the DBNBS radical adduct 9,
reduction of which would give rise to the products 5–8 (Fig. 2) that
were detected in ESI(+)-MS experiments.
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Reaction mechanism: A radical chain mechanism (as outlined in
Scheme 4) for the addition of TeCl4 to alkynes is consistent with
the evidence obtained in the present study. In the absence of an al-
kyne, the concentration of �TeCl3 radical 1 is probably too low to
promote the formation of the DBNBS radical adduct 9 (Scheme
3), as has been demonstrated in control experiments. Chain prop-
agation commences after addition of an alkyne 10 to the reaction
mixture and the concentration of 1 increases. In the next step, 1 at-
tacks the triple bond of 10 forming the undetectable vinylic radical
intermediate 11 [21,22], which subsequently abstracts a Cl atom
from a second molecule of TeCl4 forming the vinylic telluride 12,
regenerating the Te-centered radical 1, and thus continuing the cy-
cle. Termination could be a consequence of the total consumption
of the starting alkyne 10 or of the hydrolysis of TeCl4. The proposed
structure of the DBNBS radical adduct 9 is in agreement with the
observed EPR spectral parameters (Table 1).

In summary, the experimental evidence suggests that the addi-
tion of TeCl4 to alkynes proceeds via a radical chain mechanism
involving a Te(IV)-centered radical, the existence of which has
been indirectly demonstrated for the first time in the present
study.
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